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STRESS DISTRIBUTION IN AND DQUIVALEFT WIDTH OF FLABGLS
OF WIDI, THIN-FALL STZEL BEAMS*

By George Winter
SUMKMARY

The use of Aifferent forms of wide-flange, thin-wall
steel beams is becoming inereasingly widespread. Parit of
the information necessary for 2 rational design of such
members 1s the knowledse of the stress distribution in end
the equivalent width: of the flanges of such beams., This
problem is analyzcd ian this paper on the basis of the the-
ory of planc stress. 4s a result, tables and curves are
given from which the equivalent width of any given beanm
can be read directiy for use in »ractical design. 2An in-
vestigatlion is given of the limitations of this analysis
due to the fact that extremely wide and thin flanges tend
to curve out of thneir plane toward the neutral axis. A4
sunmary of test data confirms very satisfaciorily the
analytical results.

INTRODUCTION

This paper deals with the distribution of longitu~-
dinal stresses 1in the flanges of thin-wall beams of I-,
T~-, or box shape, or of similar shapse. _

Beams such as I- and other rolled sections and com-
posites thereof have long been in wuse -in structural engi-
neeriang, and it is generally assuméd that the magnitude
of the loagitudinal siresses does not vary over the width

*Condensed from a. thesis accepted by the Graduato
School of Cornell University in. pmrtial fulfillmont for
the degree-of Doctor of Philosophy, Junce 1940,

This anolysis was undertaken in parallel with an ox-
porimental investigation into this subject sponsocred by

the American Iron and Stcel Institute at Cornell University.
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of the flange at a given cross section., With the develop-
ment of light-weight construcilioans of different kinds there
is, howcver, at present a definite trend toward the usc of
I-, T—, and other sections of considerablec width and rather
small thickaess., Strucitural ' members of such kind are
widospread in shilp and airplane building end, with the
developnent of ths spoit-welding technigque, are becoming
increasingly important for small-scale structures such as
residence bulldings,. In connection with thig development,
investigotions have bsen undertaken to ascertain whether

in such cosos the bending stresses sti1ll moay be assumed to
be unifornly distributed over tiho width of tre flange.

(See refercnces 1, 2, cnd 3.) It was fuund that in wide
beams the stress distribution considsradbly deviates from
uniforrnity and that for a rational design of such beons
this nonuniformity must be taken into account. 4All those
investigations which trecat the dbekhavior of the benm as a
whole are concerned with spoeial cases. Morcover, very
conplex nathematical exprossions cre arrived at which, for
aumerical ovaluation, requirc an anount of algebralc con-
putation prohibitive in design practice,. In addition, the e
stress distribution in.the flangces is treated as o problem ’
in planc stress without analyzing the limitations arisiang

from this approach, : £

The present work, in which a different mothod was
used, undertakes to investigate the stress distridbution
in the flanges of I-, T=-, U-, and box-shape boanms_and to
prescnt the nunerical rcsults in the form of %a olps and
curves for dircct usc in practical design work., In order
to achicve this purpose, two stops arc nocessary: (1) The
state of stross in the flanges is analyzed for differont
loading conditions and as a result curves nre presented
from which thoe oquivalent width for practically all possie
ble beam dimeasions carn be read dirsctly; and (2) an in-
vestigation is coarried out to ascertoir the limits within
which this analysis, bascd on planc stress, is sufficiently
exact; as o resuld, simple fornulas are given for the linm-
iting dimensions of beams to which the forcgoing analysis
applicss " In addition, it scemod desirable to proviie pos-
s€bilitios for exparipmeontal verification of tnis analrysisg.
For this purpose, a further curve is computed, which glivos
the retlo of tho magnitudes of the stressos at the center
of the flange to thot at the edges for I-beams. These
ratios can be checkod experimentally by straln measurenonts. '
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THEORETICAL AFALYSIS OF STRESS DISTRIBUTION

General Method

For practical design work it is important to ascer—
tain that the actusl stresses at no point exceed a given
limiting working stress. In order to achieve this objec~
tive, it is simplest to make use of the idea of the equiv-
alent width. In figure 1 the actual stress distribution
over the width of the flange of an I-beam is given in full
lineses The area under this curve, multipliad by the flange
thickness, represeants the total longitudinal force acting:
in the flaage. If tais areas is replacod by a recitangle
(dotted lines on fig., 1) of equal magnitude, the depth of
which is equal to the actual maximum stress Opaxs o2

equivalent width 2b? ig obtained. Obviously the flange _
of width 2b with its sctuslly zonuniform stress distri- =
bution may then, for all practical purposes, be replaced

by a fictitious flange of the same thickness, but of cquiv—

alent width 2b?' and of uniforn stress distribution. In
particular, the section modulus will then be conmputed on

the bagis of 2b!? instead of 2b, and as a result thc

stress found from the elemecntary formule op,,x = M/S will

then coincide with the actual Cpax in the flangeo.

Throughout this investigation the x-axis of the coe—
ordinate systen is taken in the longitudinal direction of
the becan, and taec y-axzis is taken as shown in figure 1,
and the z-axis is taken in the vertical dircction. If a4
is the thickness of the flange, the total longitudinal

force acting in the flangs beconesd
b
. . I}
¥ = 24 . / ox 47 o T (L)

a—

(s}

and the equivalent width 1s obtoined frdn ce e
' b

F
2b7 = = —= fcrx ay O
d-G'maxa "Onax ' R
o

If, for the morment, "the snall curvature of the bean
due to berding is neglected, theo flange nay be regarded
as o plane plate loaded by shearing forcos along its Joint
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with the web., It is then possible to investigatec the re-
sulting stress distriduition dy neans of the theory of
plane stross. The distribution of the shear stresses
along the Joint of web and flange evideantly follows the
distribution of %tuoc external shearing force in the bean
as a whole. This assunption holds exactly only for

beans loaded by continuously distributed loads. Concen—
trated loads result in local irregularitices of the shear
distribution because of the distributing action of the
woeb and becauso of the actual arsca of _application of such
so-callecd concentrated loads. The infiluence of these
factors will be investigated latexr in this paper. Thus
the total shear T trausmitted fron the wco to the flange
at any particular cruss scction is proportional to the
external sghearing force V, mnanmely,

T=%V=kv (3)

where n 1s monent of area of flange about neuwtral axis
and I is noment of inertia of tkhe bezm. The sitress dis-
tribution of a plane plcte loaded in tiat manner will now
be analyzede.

Throushout this investigation the span of the bean
is taken as, 21 and the width of the flango as 2b; the
thickness of the flange is token as unity. Thus figure
2(a) roprescnts the flange of an I-bean lozded dy a single
conceairated force in the conter; figure 2(b) shows the
fiange of a Tox Lean under wuniforn load. Because the prob-
ler is one in plane stroess, the solution reduces to the
in;ogration of the differential eguation. {(Sec referonce
4.

4 4

24 2 ° 2’ 0 (4)
+ + =

ax ax2ay®  oy*®

where $ is tho Airy stross function. Thon tho stresses

are .
O = :yf _(5&)
oy = ::f (50)
Txy 7T afaf; (8e)
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where Oy is the longitudinal stress; Oy the trans-—

verse siress; Tzy, the horizontal shear stress. Equa-
tion (4) is satisfied by any function of the form

n
$ =§;(An cosh apn ¥ + By sinh ap vy + C, ¥ cosh an ¥
+ Dy y sinh an y) cos ag x  (6)

where -

nw

tp = _2..1_ - _—

The constants A,, Bp, Cp, Dy follow from the bound-

ary conditions. By substitution of § -(equation (6)) in
equation (5c) it is possible to represent the distribution L
of Txy along the loaded edge of the plate as a Fourier -
series. The boundary conditions common to both types of

beams (see figs. 2(a) and 2(b)) are:

]

Oy O at y = £db

1l

and ox = 0 at x *1

The second of theése conditions is satisfied by making =&
odd. - Two constants are required to satisfy the first con-
ditione. In addition, there are two more conditions in
Txy along the longitudinal edges that vary according to

the particular case. Thus, two more constants are reguired
to satisfy these conditions, and hencs all four constents
are determined. It may be noted that this solution results
in a2 set of horizontal shearing stresses along the short
edges x = %1, which may or may not coincide with the ac-
tual distribution in any given beam, depending on the type
of practical end support. However, because of equilibrium -
and symmetry, the resultant of these stresses is zero along
csither cdgce. Therefore, these stresses, according to
Saint-VenantTs principle, kave only local effects, which
disappear ot a short distance from the edge. But from the
designert!s point of view only the stress distribution at
and near the cross section of maximum moment, that is, near
the center portion of the beam, is of interest. These
stresses will not be affected by the shearing stresses
along x = #£1.
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Having thus deternined all four constants, one is
able to compute the stresses at any point of the flange
by means of cguation (5) and the sgquivalent width fron
equation (2).

Stress Distribution in I~ and T-ILoans

The goneral solution Jjust outlineéd applies only to
plates loaded along their cdges. Since, for I- and T-
beams, the shear from the web acts. along the center line
of the flange, lot the flange be cut in holf along the
x-pxis, The distribution of thesc applied shear stresses
st ¥y = 0 is cxpanded in a Fourler seriecs in sine only
and with n odd. Let X, be the coefficicnts of this
serlies. Then tho boundary conditions are:

n

Txy = § X, 8in apn x

(1) &t ¥ C,

(2 At y =D, op = 0

(8) 44 y = b, Txgy = O

(4) Since the plate is cut in half along the x-axis,
there is the further condition that the two
halves are prevented from separating along
the cut. Since bodily translation or rotation
of either half is prevented dy eguilibrium

and symmetry, this condition results at Yy =
2

in o7V = .
ox=?

Conditions (1), (2), and (3) are evaluated by using
for ox ‘equation (Ba), for Tgy ©quation (8¢), =and for
$ equation (6). In order to evaluate condition (4), let
u bo the displacenent in the x-dirsction and v in the
¥y~dlrection, Then the longitudizal gtrein

1 - L(ad ., 22

and the shear strain

s, o

1 1 32§
= 2L = =7 =
xy 3y * ox el (72)

Y Rk
=y : ox 3y

Q

0
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where B is Young'!s modulus, v 1is Poisson's ratio, and
- E
T2(1 + v)
equation (7a) is differentiated with respect to ¥

is the modulus of elasticity in shear. If

a2y 1 3° '
= o _._".._. (8&)
2zdy E ( dxza:r)

And if equation (7b) is differentiated with respect to x,

with <52V> =0 ' T
ox= ¥=0 ' _

s 33, N\ ( > -
= - = (81)
(axay )-; 3x2 oy

If the right sides of equations (8a) and (8b) are equated,
it is seen that at y = O

3°%¢ 3 3
1 _ 173§ 3°§
G axzay> " E\&FF TV 3:2a5 v=o (8¢)

Equation (8c) and conditions (1), (2), (3), result in four
simultaneous equations in A,, Bp, Cp, Dp. Sclving these,

the four constants are

(1 - p) sinh®ep b + (1 + V) (apn b)?

Ap = = Ep {9a)
ap®(sinh 2 ap b + 2 ay b)
1l - v
By = Ep 5—;;5 ) (9b)
1 4+ v
Cn = Kn L N, (9e)
2 an B

(L +v) cosh®a, b + (1 -v)
Dp = ~ Ky : 2 : (94)
apn{sinh 2 ag D + 2 ap b)




8 NACA Technical Hote lo. 784

All these constants are expressed in K,, that is, in

terms of the Fourier_coefficients of the shear distribu-
tion series along the loaded edges. It—is tnerefore pos-
sible to adapt the solution to any given type of loading.

Stress Distribution in Box and U-EBeans

The flanges of such beams are loaded by shearing
stresses along both longitudinal odges. (See fig. 2(b)).
The distribution of these stresscs again l1s expanded in
a Fouricr series in sinc only and with =n odd, the coef-
ficients of which are Kn. Then the boundary conditioas
are?!

n
(1) At 7 = b, Txy = i% K, sin an X

+b, Oy = 0]

(2) At ¥
(2) And by symmetry, at v = O, Ty = O

If equations (5a), (5¢), and (6) are used, four simultanc-
ous equations are again arrived at from which

A, = =K, 2 b sinh ap b (10a)
an{sinh 2 ay b + 2 ap b)

By, = 0 : (10%)

C, = O (10c)

Dn - X 2 cosh apn b (lOd)

n anl{sinh 2 an b +. 2 ap b)

Eguivalent Width for Different lLoading Conditions

In order to derive data for use in practical design,
three kinds of loading are investigatcd for both typas of
beams and for different ratios of width to span, b/1.
The trpes of loading and the correspordinsg shear distri-
butions are shown in figure 3. Thesc shear distributions
are oxpandcd-in Fouricr series in sine only and with n
odds The respective Fourier coofficicnts are:

For loading (a)
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For loading (b),

) L .
Ky = ¢ _ (111p)

For loading (e),
X, =:i:%'.- sin %:E- (llc)

If these cocfficionts arc introduced into equations (9) aad
(10), the stress funciion §# is then determined from
equation (6).

o

In order to computc the eguivalent width 2b', use
is made of equation (2). Introducing into this equation
ox from equation (5a) b

~b 2 y=b
& 328 ag

5 pt = — -0 = o = =9 __ (12)
Omax Omax max

The maximum stress op, 4 (see fig. 1) occurs at the web,
that is, at ¥y = 0O in I-beams and at y = £b in box beanms,

Thus, . . e e

3%
-< S ) for I-beamrs, and
5 y=o0 .

Omax =
2

Cmax = <%;§‘ 5 for box beams
Dy y:

For design purpose it is the ratlio of the equivalent
to the actual width 2b!'/2b that is important. If Opax
is substituted into equation (12), one obtains for I-
beams - ' -

- F="b
.dﬁ 3
2b 1t _ -]; a7 ¥=0 (13a)
2b b 52.¢'\ .
<a~.r2 \

and for box beams
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a,;s/7=b
Zp!t 1 o¥l y=o
=3 S (13b)
2b <:5 ¢ .
oy*® v=b

Having obtained the raductior factor 2b'/2u, it is taen
possible to determine the sguivaleént width of any given

beam, multiplying the actwal width by the appropriate re-
duction factor. The meximun stress is then obtained from

the ordinary flexure formulsz

Crmax

_ M

= 57

where M is taz tendirg nmomens and S' is the reduced
section modulus determined By usirg the equivalezxt width
2b!'! iastead of the actual width 2b.

The stress concentration and hence tho eguivalent
width vary ecloang the beam. For concentratced locds the
concentration is largest, that is, the equivalont width
is the smallest, at ftiie point wucre load iz cpplied, which
usually is also the scctior of paximum momcnt. For beams
with wpiformly distributed load, tae mazizmun no—mornt acts
at the ceater of the span, and hence it is this place for
whica the reduction factor is to be determined. For usc
in design, reduction factors pertaining %o the sections
Just mentioned have Deen compuited for a wide range of
spaniwidih,. It is egsily seea that the reduction factors.
for loadings (b) and (c) of figure 3 are ideatical. 4
comparison of equations (11b) arnd (Ile) reveals that K,

for loading (c) is obtained from X, «£or loading (b)
+- 1

through multiplication by —— . For loading (v), how-

-+ /2

ever, the critical cross section is the center of the span

where cos an X = cos 0 = 1; vhereas for loading (c) it is
el
. nr B .
the quarter points where cos ap X = cos 5 = —_—

L —F )\/—2—‘

Hence, the stresses at that point are obtained from those
at the ceanter for loading (b) by multiplying the series

for oy, term by tern, by.l/2. Since this factor appeafé

both in the numsrator and in the denominator cf %he raduc—

tion factor 2b'/2b {see equation (12)), the equivalent
widths for both types of concentrated loads arée idsantical.

w

d.“

eries - mg bl

— — ———
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It is tkerecfcre safe to apply this reduction factor to
any tyme of concentrated loading.

In table I nuncrical data are given for thac reduc-—
 tion factors of both types of beams investigatedl and for

distributed and ccuncosntrated loading. =

TAZLE I T

PRy

Ratios of Bquivalont to Actual Width, 2b%/2b

iBeans I~ and T— Box and U= 1
5 L/ o (a) (D) o(a) p(®)
l n 0.657 0.575 | 0.880 c.F57 |
'*§ 2 .958 791 | .957 778
ﬁ\3 T .981 .881 .983 .881
:b{n .990 .927 .28¢ .926
5 ;*\ .993 «949 .994 .350
(a)? is-unifornly distributed loasd ' S

(D)P is concentrated loald as tar of spaa or

two cgual concentrated loads ot quarter

points. ’

Thae only nuneirical results giggz.iz Scanadel's paper

o1 box becams (rofercacs Z) dertain to a bdean of rabio
span : vidth = 1. Ior this bear Sckucilel fouréd for 2b'/2b
tac following values: N.E53 for ceater 1loal, $.382 for
unifcrnly-distrivduted 1sa2, and 0,547 for guarter-point
l~oéise I+ is sceor that tho d1ifferences lLeotweoen tho rosults
obtetaned by Schnadells cumbercomt rethoé and those cbtained
by present sinple arprcach are negligible for all nroacti-
c~l purposcs. ) . . e -

It follows from table I that the recuction factors
for I~ and. I-beans are practicelly identical with those
for Lox and U~beans except for extrenely wide beans. For
design work the values for I- and T-bears nay thercfore be
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o

used =zlso for box and U-beams., For more convenient use i
these foctors are prescnted ir figure 4 in the form of

two curves from which for any particuler beam and loading
the reductior factor can be read immediately.

EZPERIMELTAL VERIFICATION

In order to faclilitate an experimecntal test of these
aralytical resulits, it seems desirable to develop data
that ccn 9e dircectly measured on test speecimcans., For this

reason the reotios opax/Opin Bbave becn compubted for I- }
beams, whare . i’
2 *
Omax = 27 and Opip = (——2- :
oy y=0 -=b /
P
The results arc given in table II, N _M//'
.//
TADLE II ’

Ratios of Maximum Stress at Web to Mininum Siress

at Edge of Flange for I-boams, Opax/Orlin

Extonsive experimental work has becn carriecd out to
canck the anzlyitical resulis. It included wide—flange .
rollcd scectiors (d = 0.27 inch) and cold-formed beconms made
"of thin sheets (4 = 0.077 inch and 4 = 0.049 inch). 4
razge o2 1/% from 4 to 18 has been covered crd cernter

1/b ye P .
ﬁ 1.30 2250 "

2 1.07 1.48

3w 1.03 1.23 .

4 1 1.015 L.14

5 u 1.005 1.G9

LA L
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loading as well as quarter~point loadins has been inves-
tigated. Strains werc mcasurcd by means of Huggenberger

strain goges and siresses werce computed from the strains,

3ccausc this test worlk is part of anrn extemnsive rescarch

progren, spoansorced by the American Iron andg Steel Insti-
tute, the expecrincuntal details will be reporicd clsewhecre.
Tro results are sumnmarized in figure 5, which gives the
theoorctical curves and the experimental results for the
cleoven beans tested. It is seon that the coinciderce of

enpirical and analytical results 1s wvery close throuzadutb

the entirs range. Por this recaoson it is believed that thc

cauivalent widths computed amnalytically may safely be
reconncnded for use in desizn. ’ C

ZFFECT OF DISTCRTION OF CROSS SECTIOW

The foregoing analysis 1s based on the assunption
thot the flange may be regarded as o plene plote, thus
cllowing the applicatior of.the fthcory of plane stress.
All other aouthors dealing with this protlen kave rado
the sore assumption without investizaoting its validity
for wide beams of thin sheet nmaterial. Actually, however,
the flaongo is not only curved longitudinally in the
loadecd beom, but, under the cctiorn of the longitudiaal
bending stresscs, also tends to curve in the dircction
perpendicular to the axis of the bean. For this reason
it 1s necessary to investigete whetlhcer or not thils double
curvature naterially affeccts the stress distribution

Ar exact soclution of this gucstion would roguire o
nathenatical apperatus iaasppropriately involved for the
given purposc. For this roason an approxinate method
will De used sufficicantly cxact for the present purposce

FTigure 582} revreseats a port of an I-bean in pure
bending; figurc 6(b) gives a short elemeat ab of ke
botton flonge. It is scen that, becatse of the curvoture
of the loaded bcan, the tonsile forces H per mnit width
of the flange act at an angle d¢@ and hence hnve a ro-—
sultoat R  tbisecting this anglo, thet is, acting in o
radiiacl direction. DJecause H 1is distributed over the
entire width of tae flange, & 1is sinilarly distridutod.
Thercfore this resultant R acts as o force perpondicu—
lar to the surface of the flange tendiag to bend the
floazge inwerd toward the neutral cxis. For this rcason
the distonce from the flonge surfoce to the aecuvitral axis
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beconcs smallor at the cuter than ot tihce inuser portioans.
of tho flongee. Jecouse the bending stressces arc propor—
tional to this distance to o degree of accurocy sufficicnt
for the presoant- purposc, they decrease from the wed touvord
the cdrsese. '

Fron figure 6(b) it is secn that, per unit lenghth
of flangse, : .-

R:H%:%:gii L (14)
s

where r 1is the radius of curvatuvre of the bent boan,

Ag ghown in figure 6(c), this R represents o transverse
lond tcndiag to bend the flange. The differentinl egua-
tion Tor tho bending of 2 lorg roctangular rlate (fron
referonce 5, equoation (67)) is: -

=i ' (15)
r D

where w is the deflection c¢f flangoe

D the flexural rigiditr of plate ( >
12(1 - va)

and & the thicknoss of plate

It is secen that cquation (15) is of tke same tyve as the
diffeorenticl cguation for tke bernding of beans

oxcept thot the TLean rigidity EI is revloced by the |
plate rigidity D.. . For an. exact solution the difforcn-—
tial ecguation :

a*v/ay* = p/B

for cylindricol shells should be used, where p 1is the
total trersverse force and cousists of R and ¢f the
elastic recoction. It can be ghown that Ffor the prescnt
purposc the nunmecrical differonce bebtweon the rosults boscd
upon this exact approach and those obtained Dy using
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cquation (15) are negligible. Hence the familiar formue

las for the doflcctions of beams can be applied to those
of tkhe flange if EI 1is replaced 3y De On this basis

the maxinum deflection wgpapx (sce fig. 6(c)) of the -

flange out of its »nlanc will now be debtermined.

It is assumed that oy and theredy R can be taken
os constant throuzhout tho wiéth of the flange which is
sufficieatly exact for small valuces of v. Then for I-
Seans froa the ordinary cantilever formula (see referenc
6, DPe 356) .

R b*

Yoax = ) (16)

For oan investigation of the stress distribution under
actual working conditions, let o De the working stross.

Then the radius of curvature r of the bean is dotermincd
fron o i

T = _El with M= 3_9;1..{_.:2 .
M h - —
to r = _2h ' (17)
2 O.w - — i o e

where I is the nmonont of inertiz of the bean. If cquo—-
tion (17) is substitutod in equation {(14)

2 =2 Gwz é%;

An? from cquatiorn (186)

b ow V2 1B* _
Woaax T 2 Uwz -————EL—--= 3 <l> L (1 - v®) (18)
8 DEh 3 a®n o

The valuc of Woax Roving been deternined, it follows

fromn the linear variation of .oy over the depth of the
cross section thet the ratio of the naxinun stress at
¥y = 0 %o the mininup stress at ¥y = &b is :

nax = _ _ (19)
Orin h -2 Wrax )
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If the sane considerations are applici to hox and U~beons
and if the generally weak rostraint of the flange at the
web is neglected, the flange, nay bs regarded in this case
as & sinplo plote froely supported at the wobs, Fron
reference 6, p. 360, : '

] 5 mit .
max = —— = _ - (=02
WRmax T T4 7D )

or, since here the span L = 2b,

4
5 Ib
W = —— : . (20D)
nax =2 D
and using agoin equaticns (15), (16), (17)
4
W = 5{ X : (L -p"*) (21)
nox \ o a®n L T -
If this w,,, is introduced in equation (19), the stress

decroaso Juc to the distorition of the cross scction con
again be determined, T )

It is thus seocn that the curvaturc of the becan ro-
sults 1n itself in o nonuniforn stross distridution in
“the flangos, wiaich is an cffcect centirely differcnt fron
that investigatod Defore on the basis of the distribution
of the sheariasg forces., An cexact ilavestisation should
thereforo consider the Jjoint action of _both thosc effcets.
It con be shown, howvover, thot in beans of practically
possible dinmcunsions the effect of the curvoture of—the
bean 1s exccedingly snall and nay tlerefore be fieglected
in practicel applications, ' . . ) - -

In order to establish a criterion iadicating in wihilch
casc the cffeect of the curvature af the hean nay be ne-
Zlocted,y, 1t will Do ossuncd that a stross deccroase of 4
percent . is negligible for all practical purpescs. Such o
stress decrecasc results in a roduction of tho equivelcant
wicth of less than 2 percent, which is loss than any at-
tainable design accuracy. It is therefore nccessary to
cegtablish a criterion such that ‘ '

Onax = Opin = 004 Opax (22)
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Jecauso thc.strossos-are ﬁropprtionql to the distonces
from the neutral axis, if equation (18) is uscd for I-
beans :

"jax \ i e
= 6 1 - v3) £0.04
G )(th ¥ S [
or
2 . _ T/
»® < _0.0817 E (2333
2

Y s

ond, in particular, for stoel beams with 2 = 3 %X 107

pounds per square inch Co R

2.57 x 106
dh O

where b, h, 4 ore, respectively, half thec flange width,
the depth, a2nd the flange thickness of thc beanms Oy, the
workiangz stress; ani v, Poissonts ratio.

Sinilarly for box beams, if equation (21) is used

T~
J.-

or

b2 . _0.0633 I

— < ' 24a)
dh = /1 - = Oy (

anc. particularly for steel beans

1,98 % 10 ) . (24D)
o, SRR

A

b=
dih

enploying the same symbols as above. ' T

Hence, the data for the equivalent width given in
table I and figure 4 may be applied to any beanm satisfy- N
inz the coaditions expressed in equations (23) and (24).
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It—may ¢easily be verificd numerically that practically
all beams with structurally possible dimensions will
satisfy these ¢onditions. 7

CONVERGENCE OF THE SERIES INVOLVED

Ia ths foregoing analysies, 'the reductlion factor
2b¥/2b as well as the stress councentration Opax/Omin
are obtained as quotlonts, the numerator and the denomi-
nator of which are in the form of o Fourler series. The
numericel valucs given in tabhloes I and II have becn obd-
tained by taking ning terms of cach of the series involved.
In order to obtain an estimate of tho accuracy thus 00—
tained, it seccoms advizalle to analyzc the gquestion of the
convergence of those series, This annlysis will be made
here for I-becams only becausc tho rethod is e¢ssantially
the same for Dox beamns.

In order to investigate the rnumorator of qquaﬁion
(13a), the coefficients 4., B,, C,, D, from equatiouns

(9) are substituted in equation (6), which results in

y=b
o _ S Ek
Sy 1 %n : : E -
J=0 : -
Substitution of the appropriate KX, from egquations (11)

gives for uniformly distributed load ST

=

a n 1 . '
n const :
g2 gl Bl % 2008 : _
1 %n 1 n~ am 1 n*

and for concasnitrated load ' S . o T T
% Rp Ry 2% %const T
Z'E— = Z Pl lD Vi o
1 Yo 1 il 1 Bn”

It is seen that each of these expressions 1is an .absolutely
convergent series, the first few terms of which dgcrease
rather rapidly. ' )

Making the same substitutions in the denominator of
equation (13a), one arrives at

1
vl

i
L]

I.."Iilll!h

&
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3 n
3
( g > 2 (&, ap® + 2 Dy ay)

L

I=0

(3 + v) coshaan'b +(1 = ) + (1 + v)(an bn)®

z
n

i}
4
M

2 sinh anp D cosh ap D + 2 an ®

Beeéause the hyperbolic functions involved incrcase ex-

ponentially with an, 1t is seen that for higher terms
(ay large) the individual terms of this serics approach
the corresponding terms of

3 + D 3 + v
L A —_— X
3 % n

K coth oy b =

n

b

becausec for large an coth ap D =1, If for uniformly
distributed load K, is sudstitutod from equation (1lla),
it is scen that the higher terms cf this series are of

n
the type I % Qﬁ%ﬁi, which again is absolutely converg-—
2 n . N
ente For concentrated load, however, substitution of Kn
from ecuation (11b) gives a serics the higher terms of
which are seen to approach those of the series

D const

while the first few terms of the former series
n ..

1
decrease more rapidly than those of the latter. Heance,
the series for the donominator of equation (13a) for con-
centrated load is divergent, althouzgh the indlvidual terms
approach zero with increasing n and the first few bterms
decrcasce rather rapidly. ' : :

In a purely mathematical scnse this divergence does
not threaten the wvalidity of the solution, Indeeqd, $
(equation {6)) satisfies the original differcntial equa-—
tion (4) not only as o sories but torm by term. EHence,
the series may be broken off at any arbitrary term nad the
sum will still satisfy equation (4) and all other equations
derived. from it,. Thorefore, the protlem consists in the _ .
physical rather thaa in the matkhematical legitimacy of tak-
ing a small number of terms of a divergeat series.

It will Ye remembered that by means of the first of
the four boundary conditions the given shear distribution
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at y = 0 is expressed in a Fouriler series, the coeffi-
cients of which arec X,. In order to obtain full coin-
cidence of this scrics with the shoar diagram of figure
3(t), one would have %o take an infinite nunber of tcrms.
Breeking the scries off after ninc terms mcans that the
discontinuous curve of figure 3{b) is replaced by a con-
tinuous, though sharply changing, curve. A4s an exanple
such a curve, but for four iterms, is given in figure 7(a)
(reforence 7, P. 63). For nine terms, part a of this
curve will be correspondingly shortaer. If one now regords
the closcly corrcsponding curve of .figure 7(5) as the
diagrow of shear distridbution it iIs soen that it corro-
sponds to o loading of _the kind of figure 7(e) rather :
than to an idecally concentrated load. The longth a is —
ogual to ono~half the woavo leungth of the las$t sine wave
added, i.c., to span/n or in our casc to spmn/l?. However,
the actual shear distribution will just be of this sonc
kiad for the following two reasons: All concentrated

loads actually arc distributed over a small longth ¢

(fig. 7(c)) of the span and, before rceching the web, the
resulting shear will he Furthor distributed in the web.
Thereforec, by taking a dofinito number of terns, the .
analysis is based on a shear dlstrithution which, in csg~

sence, is exactly of the kind nctually occurring undor

concentrated loads, v

It romains to verify whother taking nine terms of ) —
tho corresponding scrics is sufficiently accurate for the
given purpose. "This gquestion may be answered in the af-
firnative for the following three reasonss:

1) In actual structures concentrated londs usually
are distributed over o length aloag the span
of not loss than span/50. Without detailed
investigation of thils quecstion, it nay safely
be assuned thot the further distribution in
the web doubles or even triples this langth.

2) The reducticn factor 2b'/2b changes very little
with decreawing vnlues of a. For instance,
for a beam of 1/ = 2w, 2b'/2b = 0.828 for
six torms and 2b'/2b = 0.791 for ninc torus.
Thus an incrcease in the length a of about 55
percent (span/il instcad of span/17) results
in an increasce of less than 5 percent in the
cguivalent width., For higher ternms this dif- !
ference becomes still smaller.
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%) Tho cxperimental results sunnarized in figurc
5 have been obtained by applying loads in
sone cascs directly throungh rollors and, in
other cases, throughk distributing plates of
width = span/24 to span/48., The good coin-
cidonce of analytical and enpirical results
is sufficient proof for the adequacy of the
chosen number of torms.

GENERAL CONCLUSIOKN

The prinary purpose of the investigation was to
analyze the stress distribution in the flanges of wide,
thin-~wall beans of I, P~, U-, and box shapc and to obtain
results suitable for dlroct appllcation in design. It is
shown %hat the nagnitude of the bending stresses in the

flanges of such beans varies across the width of the sec—

tion and that the anount of this variation depends upon
the dinensions of the beam and upon the typc of loading.

Thorefore, in the dctermination of the nagnitude of
the nazxinun bending stress in design work, the cqguivalent
width of suclk flanges should be uscd instead of the actual

width, In figure 4 curves arc giver from which this oquiv-~

alent wicdth can be read directly for -any particular type
of bean and lcading. : S

For the purpose of facilitating the cxperimental
verification of the analyticol results, further curvoes
have been conputed that give the ratios of the naxinun %0
the mnininun bending siress in the flanges, These ratios
have been checked experinentally by nearns of strain necas-
urcenents on 11 I-beans. Tho experinental data confirn
very satisfactorily the analytical roesuvltse

It is further shown bthat the cross sections of wide
beans nade of extrencly thin sheets are subject to dis-—
tortion that gives risc to zdditional stress coacentra-
tion. Equations (23) and (24) furnish sinple conditions
for deternining the limiting dinensions of becams for which
the effect of this distortion may be noglected in practi-
col cpplications. It nmay casily te vorificd nunerically
thet practically all Dbeans of structurally possible dimon=—
sions will satisfy thesc conditiocans.

Collome of Eagineering, Schcol of Civil Enginsering,
Cornell University, Ithaca, N. Y., Junc 1940.
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Figure 4.- Analytical curves for determining the squivalent width of the flanges of I-, Ty Umy

and box beams. /b = span/width, b'/d

= equivalent width [ actual width.,

*ON @10N TBOTUNSeL VOVN

P84

¥ "3E



3 Op— e
2.6 I
i\
Analytical results
B ' Load
2.2 A uniform | ,
B concenirated
A A '
q‘::: \r 13
b \\ -Experimenéal re?ulta
1.8 \\ Loa% [ _
E N o] c:enter ‘
b N + quarter—poin¢
| —
\ T
1.4 (\\\\x\
\\\\\+\“\“ﬁ
N ¢ O -
]
S~
] i s
1.0 — S\
5] 10 15
/v
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Figure 7.- Shear distribution of bsam loaded

by concentrated force in center;
representation of the actual sheer distribu.
tion by four terms of a Fourler seriles,

Figure 6.~ Actoal stress disiribtution over

- width of flange dme to distortion

of crosa section of I-beam. (&) Side-view of
section of I-beam, (b) Element, ab, of bottom
flange. (c) Distorted cross section and
stress distribution.
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